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Abstract

The subject of this research is the buckling behavior of a rectangular plate, with a bulb flat stiffener attached to one
side of the plate. The stiffener cross section has a thin web and a bulb flat flange that extends to one side of the web. The
stiffened plate structure is subjected to axial compression that increases to the buckling load. Results of the investigation
include planar property formulas for the asymmetric flange geometry, an analytic expression for the Saint-Venant
torsional constant of the flange cross section, and an analytic expression for the buckling stress corresponding to a
tripping mode of the structure. The torsional constant for the bulb flat stiffener is 15-23% higher than understood
previously. The analytic expression for the buckling stress of a bulb flat stiffened plate differs by less than 4% from finite
element and experimental results.
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1. Introduction

Stiffened plates are basic structural components of many items, including bridges, buildings, automo-
biles, aircraft, offshore platforms, and naval vessels. In ship design, a stiffener is a metal structure composed
of a web and flange. Stiffeners placed on one or both sides of a plate add strength and hinder overall
collapse of the plate panel. Because of the structural complexity of stiffened plates, understanding their
elastic instability is of great importance to ship designers.

Stiffened plate investigations occur in three general forms: theoretical, using classical and emerging
theory; numerical, using finite element methods and computer-aided simulation; and experimental, using
actual grillages. With regard to bulb flat stiffened plates, it appears that most of what is known of their
behavior comes from numerical and experimental investigations. This investigation attempts to contribute
new theoretical insights into the behavior of bulb flat stiffened plates.

The use of bulb flat plate stiffeners in ship design is said to reduce building time and maintenance cost.
Companies that produce bulb flat plate stiffeners manufacture each stiffener as a single unit, which
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reportedly results in less production cost compared to welded or fabricated stiffeners. Additionally, the
curved surface of the bulb flat stiffener traps less moisture resulting in less corrosion. The shape of the bulb
flat stiffener is much easier to inspect, weld, and paint. These benefits save significant repair and mainte-
nance costs over the lifetime of the vessel.

A complete review of the literature on buckling of stiffened plates has been given in a series of papers by
Danielson et al. (1990, 1993, 1994) and Danielson (1995), analyzing the tripping of stiffened plates. Our
previous work also included finite element investigations of the buckling loads and modes of ship grillages
with various dimensions (Danielson and Kihl, 1996, 1997).

The only published work on the topic of the buckling behavior of bulb flat plates is apparently that of
Chou (1997), Chou and Chapman (2000) and Chou et al. (2000). They state that the British Standards
Institute design criteria for bulb flat stiffeners are unduly conservative. Their study presents an iterative
method for obtaining the critical modes and stresses. They validate the study using FINASIC, a finite
element program, and compare the results to actual tests on cruciform struts and box columns containing
bulb flat stiffeners.

An interesting aspect of their theoretical analysis is the idealization of the bulb flat flange as an
equivalent angle flange. That is, they treat the bulb flat cross section like a rectangular cross section in
regards to the bulb flat torsional and warping properties. We address this treatment and show that ide-
alization imputes error in the calculation of the bulb flat cross section’s torsional rigidity. Developing and
using expressions that maintain the bulb flat geometry yields more accurate cross sectional property data
resulting in a more accurate analysis.

In the current paper, we extend our earlier work to apply to plates having stiffeners with bulb flat flanges.
Our previous investigations were based on the assumption that the stiffener cross section does not deform in
its plane. Applying nonlinear beam theory to the stiffeners, we obtained analytic expressions for the trip-
ping stresses of stiffened plate structures. We now model the stiffener webs with plate theory and the
stiffener flanges with beam theory. Since the stiffener cross section is allowed to deform, we obtain lower
buckling stresses than would be obtained by modeling the entire stiffener with beam theory.

2. Bulb flat flange cross sectional boundary and planar properties

Consider the cross section of a bulb flat that extends to one side of the web as shown in Figs. 1 and 2.
Fig. 1 shows only the flange horizontally oriented. Fig. 2 shows the entire stiffener cross section composed

v

Fig. 1. Bulb flat flange geometry.
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Fig. 2. Bulb flat stiffener cross section.

of the bulb flat flange and thin web. Five independent variables (z,, ty, 7, 71, and a) uniquely determine the
flange boundary. The variable ¢, denotes the web thickness defined by the vertical distance between point 4
and point 5. The variable #,; denotes the bulb thickness defined by the vertical distance between point 9 and
a point horizontal to point 5. The total flange thickness (at its maximum value) is denoted by # = #,, + tu¢
defined by the vertical distance between point 9 and the line formed by points 3 and 4. The corners of the
cross section have radii of curvature » and r;. Points 5-6-7 and 8-9-10 define the corners with radius of
curvature r. Points 1-2-3 define the corner with radius ;. The cross section has a flat portion defined by the
points 7 and 8, that slopes o degrees from the y-axis.

Let 4 denote the flange height. The boundary of the flange includes two vertical sides x = 0 and x = Ag,

where iy = trtano + (1 — 2tano + 2seco) and 0 < o < 7/2 (see Appendix A of Wilmer, 2003). The upper
boundary of the flange cross section is given by

Fi(x) = (ty + tor — 1) + /72 — (x = 1), 0<x<r+rcosa
f(x) =4 falx) = —xcota + &, + fpr + r(cota + csca — 1), r+rcosa<x < hy —rcosa (1)

f3(x):(tw“"’)—\/ﬂ—(X—hf)z, hy —rcosa<x < hy

The lower boundary of the flange cross section is given by



6410 D.A. Danielson, A. Wilmer | International Journal of Solids and Structures 41 (2004) 6407-6427

g(x):{gl(x):rl— rf—(x—rl)z, 0<x<n 2)
&(x) =0, r <x<he

Appendix B of Wilmer (2003) and Appendix B of Kihl (2003) contain a summary of the general planar
property formulas. For brevity, the general formulas are omitted here. The formulas can be specialized for
a class of bulb flat flange cross sections by assigning a value to one or more of the variables. For example,
setting o = n/6 defines planar property formulas for a class of bulb flat cross sections with a 30° slope.
Additionally, if the radius of curvature of the cross section corner 7 is assumed to be one-tenth of the web
thickness #, (r; = ty/10), terms involving r; become negligible. The following formulas are algebraic
expansions for this specialized class of bulb flat flanges. The flange area and centroid formulas are

Af:—(l—g)r2+ <1+%§> <1+\/T_>tbf Vi V3

r+-— tbf+3
| a3 2\, (7 2V3 V3 w3 2443
x_[<Z_T—§>r +<6+—> W+<1+T_W thf+ 3 Fwlog

6
1++3 1 1
+< 6 )rtbf+6t tbﬁ‘lgtgf]Af

V3 I 5\, /7m N\, 5n V3, 1 V3) ,
(18—12%)’*(4—1)”“ IR N L R a L

/3 1 V3 Vi, V3 V3|1
+<1+T Fhylor + R thf+7twtbf+ 6 be—'_18tbf Ay

twlof

y:

Formulas for the moments of inertia about the axes and centroid for the specialized class of flanges are

St 5 11V3 7n 11V/3 5 5= T 5
Ix—<—1+16> +l<§+T—6>tw+< TEREE 6>tbfr+ (-1+3)2
2V/3 S5t St V3Y, |, 2V3 1),

+<_T_2+6>tWtbf+< 1+ 12 3 >tbf r+ T+§ r,

Vi, V3., V3 . V3,

r+36[bf+6twtbl+9[tbf+ ttbf‘

3 3
+ <§+ 1) (ttor + tutyy) + <§+3> o 5 b

11V3 2nv3 2 13z, 2613 5 43V3 4 2443 ;
1y<27 9 +9*144>”+Kz7+3 R e S L

V3 4 1+V3 = 2V3 V3 1
+KT+5>’W’“<T—Q>@ o ( #3 Juict (s )
V3 o, V3,
+ Etwtbr + 1—08tbf

L=1L+1—A4F+7)
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3. Bulb flat flange torsion properties

The Saint-Venant torsional constant J can be obtained relatively easily for flanges with cross sections
that are symmetric about at least one axis. For instance, for rectangular cross sections with length 256 and
thickness 2a, the exact torsional constant is (Timoshenko and Goodier, 1970)

1 ; 192 1 nrh
=022 1~ — tanh =
J =3(2b)(2a) < - :Z:S S tan 2a> (3)

1

For flanges with arbitrary cross sections, finding the exact solution to the torsion problem is quite
difficult. The reason for this is, as Donaldson (1993) notes: “It is not difficult to write expressions that
satisfy the governing differential equation, and it is not difficult to write expressions that satisfy the
boundary conditions. What is difficult is to do both simultaneously.”

Saint-Venant ! offers an approximate expression for the torsional constant of any solid section (except
certain common sections):

1 A*
Tan? ],

When applied to bulb flat flange cross sections, this Saint-Venant approximation generates torsion
values that differ significantly from values obtained by finite element methods. However, this expression led
us to a similar formula with a multiplicative constant different from 1/4n? ~ 0.0253.

Corus Group 2 provides a special profile brochure (2002) that contains technical data on 59 bulb flat
cross sections, with flanges having geometry within the aforementioned class. The following analytical
formula well approximates the finite element results for the torsional constant of all 59 bulb flat flanges, and
is used throughout the remainder of this investigation:

4
Jr = 0.0231 ?

C

)

4. Validation of the property formulas using finite element models

Analysis of several finite element models using MSC Nastran 2001/Patran 2001-r3 software serves to
validate the property formulas. The property values from formulas are compared to values from finite
element models. In each finite element bulb flat flange model, 10 distinct points establish the boundary of
the bulb flat flange cross section. Straight lines and three-point arc curves are defined from the boundary
points. A single trimmed surface is defined from the curves. The arbitrary shape option in the software’s
beam library is used with the maximum allowable curvature error set at 0.005. Maple 8 computer envi-
ronment and a handheld calculator are used to calculate formula results.

Fig. 3 shows the bulb flat flange, while Fig. 4 shows the flange and web together. The area A¢ of each
angle flange is chosen to be identical to its corresponding bulb flat flange, and the height A, of each angle
stiffener is chosen to be identical to its corresponding bulb flat stiffener.

! Discussed by Saint-Venant, “Sur une formule donnant approximativement le moment de torsion”, Comptes Rendus, vol. 88, 1879,
pp. 142-154, and in Timoshenko and Goodier (1970).

2 Corus Group was formed in 1999 through the merger of British Steel and Koninklijke Hoogovens. The company is a leading
international metal company and one of the world’s leading producers of bulb flat profiled metals.
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Fig. 3. MSC Patran graph and data of a horizontal bulb flat flange.
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Fig. 4. MSC Patran graph and data of a bulb flat stiffener model.

Table 1 presents planar property values for several bulb flat flanges using expression (4) and formulas in
Wilmer (2003). The table presents a comparison of the formula values to data obtained from MSC Nastran/
Patran finite element models of the cross sections. Examination of Table 1 reveals several noteworthy
aspects. The formula results agree with the finite element results for the bulb flat flange. The two inde-
pendent sources agree almost exactly on the centroid locations (¥,7), the flange area values A¢, and the
values for the polar moments /.. Though not independent, the formula values for the torsional constants J;
obtained using the approximate expression (4) differ from the finite element values by less than 1/2%. Such

agreement supports the validation of the formula expressions.
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Table 1
Comparison of flange values

Source ty (mm) o (mm) » (mm) ¥(mm) y(mm) A (mm?) I (mm*) Percent J; (mm*) Percent
change change

Formula 6.0 17.0 5.0 8.163 9.384 335.59 21,904 * 13,376 0.28%

FE (bulb) 8.163 9.384 335.59 21,903 * 13,339 *

FE (angle) 7.730 10.267 335.59 24,199 10.48% 13,973 4.75%

Formula 8.0 17.0 5.0 8.397 10.251 376.71 27,481 * 16,928 0.08%

FE (bulb) 8.397 10.251 376.70 27,480 * 16,915 *

FE (angle) 8.010 11.035 376.71 30,560 11.21% 16,026 -5.26%

Formula 7.0 19.0 5.5 9.081 10.608 422.19 34,722 * 21,137 0.29%

FE (bulb) 9.081 10.607 422.19 34,720 * 21,076 *

FE (angle) 8.611 11.581 422.19 38,450 10.74% 21,586 2.42%

Formula 10.0 19.0 5.5 9.408 11.922 490.54 46,670 * 28,661 —0.19%

FE (bulb) 9.408 11.921 490.54 46,667 * 28,716 *

FE (angle) 9.000 12.754 490.54 52,004 11.44% 26,362 -8.20%

Formula 7.0 22.0 6.0 10.036 11.789 519.51 53,122 * 31,674 0.29%

FE (bulb) 10.036 11.789 519.50 53,120 * 31,583 *

FE (angle) 9.486 12.992 519.51 58,776 10.65% 33,449 5.91%

Formula 9.0 22.0 6.0 10.287 12.642 570.70 63,914 * 38,339 0.20%

FE (bulb) 10.287 12.642 570.69 63,911 * 38,262 *

FE (angle) 9.784 13.735 570.70 71,244 11.47% 36,965 -3.39%

Formula 8.0 25.0 7.0 11.574 13.429 681.94 91,186 * 54,785 0.26%

FE (bulb) 11.574 13.428 681.93 91,182 * 54,641 *

FE (angle) 10.939 14.786 681.94 100,732 10.47% 58,328 6.75%

Formula 10.0 25.0 7.0 11.829 14.281 740.89 107,321 * 64,856 0.25%

FE (bulb) 11.829 14.281 740.89 107,316 * 64,696 *

FE (angle) 11.243 15.528 740.90 119,359 11.22% 63,541 —1.79%

)
Variables #,, ty, and r are given. r; = (1/10)¢, and o = 7/6 rad. Percent change in J; = Jf/(,JJE) x 100.
Sl

* Indicates absolute percent change of less than 0.01%.

On the other hand, note that the finite element results for the bulb flat flange differ noticeably from the
finite element results for an area-equivalent angle flange. The centroid coordinates (x,y) differ considerably.
The moments 7, differ by 10-12%. Only the flange area results agree which is by design. This strengthens the
case that using an angle flange as an area-equivalent to the bulb flat flange produces error.

To determine the values for the area and torsional constant for the stiffener that includes the web and
bulb flat flange together, let the web have height A, where Ay, = h; — A (see Fig. 2). The stiffener area
formula is given by

As :Af +Aw :Af+hwtw

The membrane analogy for uniform torsion is a useful tool for visualizing the distribution of shearing
stress in beam cross sections and provides justification for approximating the torsional constant of the
stiffener. If a membrane of constant thickness were stretched over a beam cross section, fixed against
the boundary of the cross section, and filled with a gas exerting normal pressure on the membrane surface,
the volume under the membrane would be proportional to the torque-carrying capacity of the cross section.
It follows from the membrane analogy that the torque-carrying capacity of a cross section composed of
several components is greater, but not much greater, than the sum of the components treated separately.
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Hence, the total torsional constant of the entire stiffener is approximated by the sum of the first term in (3)
and the empirical formula (4):

4
Jsx=Jy+Jr = lhwﬁ + 0.0231ﬁ (5)
3V I

Table 2 compares the area and torsional constant calculations with finite element model results. Also,
Table 2 compares the area and torsional constant calculations to published data from the Corus
technical brochure (2002). Each stiffener model contains four rows of results, referred to as a result set
for clarity. Each row is data from a different source. The first row in each result set is data from the
formulas for the bulb flat cross section. The second row in each set is data from the finite element

Table 2
Comparison of stiffener values
Source t,, (mm) tor (mm) 7 (mm) hs (mm) A; (mm?)  I_giftrener Percent Js (mm*) Percent
(mm*) change change

Formula 6.0 17.0 5.0 120.0 932.06 1,352,719 20,534 -0.37%
FE (bulb) 932.05 1,352,704  * 20,609 *

FE (angle) 932.06 1,369,171 1.27% 18,043 -12.45%
Corus 931.00 1,353,400 0.05% 15,950 -22.61%
Formula 8.0 17.0 5.0 120.0 1172.00 1,676,051 * 33,894 -0.91%
FE (bulb) 1172.00 1,676,034  * 34,204 *

FE (angle) 1172.00 1,694,072 1.08% 30,413 —11.08%
Corus 1170.00 1,681,000 0.30% 27,730 —-18.93%
Formula 7.0 19.0 5.5 140.0 1242.45 2,448,920 34,535 —0.46%
FE (bulb) 1242.44 2,448,895 * 34,694 *

FE (angle) 1242.44 2,475,783 1.10% 30,482 -12.14%
Corus 1240.00 2,448,000 —0.04% 27,080 -21.95%
Formula 10.0 19.0 5.5 140.0 1662.34 3,206,519 * 67,721 -1.25%
FE (bulb) 1662.33 3,206,493  * 68,575 *

FE (angle) 1662.34 3,236,434 0.93% 61,791 -9.89%
Corus 1660.00 3,215,600 0.28% 57,520 -16.12%
Formula 7.0 22.0 6.0 160.0 1460.10 3,788.414  * 47,037 -0.26%
FE (bulb) 1460.09 3,788,380  * 47,160 *

FE (angle) 1460.10 3,831,830 1.15% 41,325 -12.37%
Corus 1460.00 3,788,600 * 36,810 -21.95%
Formula 9.0 22.0 6.0 160.0 1780.03 4,558,106  * 70,991 —-0.65%
FE (bulb) 1780.02 4,558,068  * 71,453 *

FE (angle) 1780.03 4,605,079 1.03% 63,240 -11.49%
Corus 1780.00 4,553,200 —0.11% 57,630 -19.35%
Formula 8.0 25.0 7.0 180.0 1885.81 6,188,305 * 70,468 -0.26%
FE (bulb) 1885.80 6,188,242 * 80,674 *

FE (angle) 1885.81 6,261,495 1.18% 70,710 -12.35%
Corus 1890.00 6,189,000 0.01% 63,520 -21.26%
Formula 10.0 25.0 7.0 180.0 2245.73 7,289,798  * 115,017 -0.57%
FE (bulb) 2245.72 7,289,731 * 115,672 *

FE (angle) 2245.73 7,368,371 1.08% 102,123 —11.71%
Corus 2250.00 7,290,500 0.01% 93,280 -19.36%

Variables ty, t, r, and kg are given. r; = (1/10)z, and o = 7/6 rad. Percent change in J, = ”J%}EF)F) x 100.
* Indicates absolute percent change of less than 0.01%. ’
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analysis for the bulb flat cross section. The third row in each set is data from the finite element analysis
for the area-equivalent angle cross section. The fourth row in each set is data from the Corus technical
data brochure.

Comparing the first two rows of each stiffener result set compares the formula results to the finite ele-
ment results. The independent sources agree almost exactly on the stiffener area values 45 and the values for
the polar moments 7 gfener- The formula values for the torsional constants Jgjmener Obtained using the
approximate expression (5) differ from the finite element values by less than 2%.

Comparing the second and third rows of each stiffener result set compares the finite element results of the
bulb flat stiffener to the finite element results of the area-equivalent angle stiffener. The two sources agree on
the stiffener area values and the values for the polar moments. However there is a marked difference in the
torsional constant values. Comparing the second and fourth rows of each stiffener result set compares the
finite element results of the bulb flat to the Corus technical data. The sources agree on the stiffener area
values A and the values for the polar moments. However, the Corus data underestimates the torsional
constant values by 16-23%. The reason for the discrepancy appears to be the lack of accuracy when
idealizing the bulb flat as an area-equivalent angle stiffener.

5. Derivation of the buckling equations

The energy method for the solution of elastic stability problems is based on an extremum principle of
mechanics that uses an energy criterion to characterize the equilibrium condition of the elastic system. A
more precise statement of the energy criterion is made in Danielson (1974) and is recapitulated in the
following discussion.

Let P; denote the potential energy of a system in equilibrium state I. Let P; denote the potential energy in
a neighborhood of equilibrium state I. Let P[u] represent the increment in potential energy of the elastic
system in transition by displacement field » from state I to a neighboring state. In addition, let P[u] be
expandable into the following component terms (functionals)

Py — P = Plu] = Pi[u] + PoJu] + Ps[u] + - -

where P, [u] refers to linear terms (functionals) with respect to u, P;[u] refers to quadratic terms (functionals)
with respect to u, and so forth. If P[u] > 0 for all nonvanishing neighborhoods of displacement fields u, then
the fundamental equilibrium state I is stable. In a practical sense, stability here means that a force, shock, or
disturbance of the system does not cause an excessive change or dramatic departure of the equilibrium state
to a neighboring state or configuration. If there exists a displacement field for which P[u] < 0, the fun-
damental equilibrium state I is unstable. Because the elastic system is in equilibrium, the linear term of the
potential energy increment must vanish. That is, equilibrium requires P, [#] = 0. The condition necessary for
stability is P [u] > 0. The critical case of neutral equilibrium occurs when there exists a displacement field u,
such that P,[u;] = 0 and Py[u # u;] > 0. In this case, the displacement field u; is the buckling mode, and the
value of the load that corresponds to this displacement field is called the bifurcation-buckling load. Stated
mathematically,

Plul =0 (6)

is the criterion used to determine the buckling mode and load given the properly defined total potential
energy functional for the stiffened plate structure.

Now consider a plate which is initially rectangular in shape and has several parallel stiffeners spaced a
distance b apart. The structure is subjected to a uniform compressive stress o (force per unit area of one
side). We suppose that at low values of g, the plate and stiffeners simply compress symmetrically. Our
object is to find the critical stress o, at which the stiffened plate may buckle into an alternate mode.
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Our analysis is based on the following assumptions, modified from Danielson (1995):

(1) Each plate-stiffener unit of width b undergoes an identical deformation.

(i1)) The plate and web obey the nonlinear Von Karman plate equations (see Timoshenko and Gere, 1961).
The flange obeys the nonlinear beam equations derived by Bleich (1952). Note that these equations
account for the nonlinear coupling between the axial load and bending curvature.

(iii) The plate and stiffener material is linear elastic, homogeneous, and isotropic.

(iv) Every particle on the bottom surface of a web undergoes the same displacement as the corresponding
particle on the top surface of the plate, and every line of particles in a web normal to the plate surface
remains normal to the deformed plate at its surface. In other words, the bases of the stiffeners are
clamped to the plate.

(v) The incremental buckling extensional strains at the midsurface of the plate and web are negligible.

(vi) The incremental buckling displacements may be approximated by the fundamental harmonic in their
Fourier expansions. Accuracy may be improved by including additional terms in the Fourier series,
but at the expense of having to use a numerical method (see Byklum and Amdahl, 2002).

(vii) The plate and web are so thin that their thicknesses are negligible compared to their width, length, and
wavelength of deformation. Hence, the plate and web can be treated as plates.

(viii) The stiffener flange has a solid cross section with a length that is much greater than its largest cross

sectional dimension. Hence, the stiffener flange can be treated as a beam.

(ix) The flange undergoes only lateral bending and torsion. The entire stiffener is too stiff to undergo bend-
ing in the vertical direction.

(x) The ends of the plate and stiffener are simply supported.

Thus we study a simply supported rectangular plate of length a, width b, and thickness #,, with a lon-
gitudinal stiffener whose ends are also simply supported. The stiffener divides the width of the plate in
halves and is composed of a thin web (treated as a plate element) of height 4, and thickness ¢,, and a bulb
flat flange (treated as a beam-column element). For the stiffened plate structure, the Cartesian coordinate
system (x;,x2,x3) is adopted from our previous work to aid result comparison and to minimize confusion
with the flange cross sectional coordinate systems (x,y) and (x.,y.). Here x; is distance along the plate—
stiffener intersection, x, is measured on the plate surface, and x; is distance normal to the plate surface. The
quadratic terms of the total potential energy functional for this single stiffened plate unit at the instance of
buckling can be expressed as

PZ[Wa V] = Uplate + Uweb + Uﬂange - Tplale - Tweb - Tﬂange (7)

Here W = W(x,x;) and ¥ = V(x,x;) are the incremental deflection fields (buckling modes) of the plate
and stiffener in the x; and x, directions, respectively. Subscripts on W and V denote partial differentiation
with respect to the coordinate system, e.g. W, = axalz—g’vz In expression (7), U; denotes the internal potential
energy as a result of strains for element i, and 7; denotes the potential energy of the external loads applied to
element i.

The internal potential energy expressions due to strains for the plate and web are

1 % a
UpmziDp/b/{<Wu+sz)2—2(1—v)[%sz—Wé}}dxldxz
-5 Jo
2

1 Dy a
U =5 [ [ 40k 1) = 201 = ) = ¥} i
0 0

Here D, = Et; /12(1 —v*) and D,, = Er;, /12(1 —v*). The potential energy expression for the external loads
applied to the plate and web are
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1 7,2) a 1 hy a
Tplate = 50l / / VVlz dxl dx27 Tyeo = 5 0ty / / V12 dxl d)C3
2 ) 2 0 0

The internal potential energy expression for the flange is

I

1 a
s =3 [ BT+ G,

Here G = E/2(1 4 v) and I, is the moment about the x.-axis through the centroid:
Ixc - Ix - Afyz

The potential energy of the external load for the flange is derived here and follows the outline in Bleich
(1952) and Chajes (1974). The potential energy of the external load for the flange is the sum of the products
of the external forces and the displacements of their points of application in the direction of the forces. As
the flange buckles, the stress on the end surfaces may change to o + do. Considering small deformations,
the work done by do may be neglected in comparison with the work done by o. The change in potential
energy for each fiber in the cross section of the flange is dThunee = (6dA4)0..

Here 6. is the relative fiber displacement due to the curvature of the flange as it buckles under com-
pression. The distance J. is equal to the difference between the arc length S of the fiber due to bending and
the chord length a of the fiber (. = S — a). The potential energy of the external load for the entire flange is
obtained by integrating over the cross sectional area of the flange. Thus

Tﬂange:U//éch2dX3.
A

To determine J., consider a cross section of the flange at distance x; along the length of the flange
(Fig. 5). The centroid of the cross section coincides with the (x, y.) coordinate origin. Due to buckling, the
point with coordinates (x.,).) in the cross section of the flange will change coordinates to (x. + Ax,y. +
Ay.), where Ax, and Ay, are functions of x;. Let the point of rotation of the cross section have coordinates
(&, () relative to the centroid of the cross section. Movements of the point of rotation define the dis-
placement of points in the cross section: w(x;) in the x.-direction, v(x;) in the y.-direction, and fS(x;)
counterclockwise rotation about the point of rotation. Hence

-

Fig. 5. Flange cross section with centroidal coordinate system.
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Ax.| |cosfp —sinfi||{x.—E+w Xe — €&
Ay. |~ [sinf cosf || ye—C+o|  |[ne—¢

Since only small deformations are considered, simplification of the right-hand side gives

o)=L I = s

Using the Pythagorean theorem, and considering 4&% — Ax] and %ﬁ—’f = Ay, to be small, yields

dxy

se=s—a= [0+ A0+ @1 - D~y [0 + @

The potential energy of the external load for the flange is thus given by

1 a
Tﬂange = EO'//A /0 [(A)C;)z —+ (Ayé)z] dx1 dxc dyc

Using the geometrical relations for the area, first, and second moments of the flange cross section

//d.x‘_dy‘_ :Af

R

//xcdxcdycz//ycdxcdyczo
R R

/Am—ﬁ+m—ﬁwﬁpw

we find that the quadratic terms of the potential energy due to external loads are given by

1 a
Tﬂange = EO'/O [Af(l/z + le) — 2Af§v'ﬁ' + 2AfCW/ﬂ, +Ifﬂl2] dxl

Movements in the x.-direction affected by w(x;) are assumed negligible by assumption (ix), compared to y.-
direction movements perpendicular to the surface of the web, yielding

1 a
Tﬂange = EJA (Afv/z - ZAféU/ﬁ/ +Ifﬁ/2) dx1

The point of rotation of the flange cross section is taken to be the point centered on and at the top of the
web (half-way between points 4 and 5 in Fig. 1). This selection provides continuity of the motion at the top
of the web and the flange. Relative to the orientation of the bulb flat cross section, & = iy — X is the vertical
distance from the centroid to the point of rotation. By the parallel axis theorem, the polar moment /; of the
flange about its point of rotation is

(x — he)* + (y — ;tw>21

A lateral movement of the point of rotation v(x;) equates to ¥ (xi, Ay ). A rotation or twist about the point
of rotation of the flange f(x,) equates to V3(xy, hy).

In summary, the quadratic terms of the total potential energy functional of a single stiffened plate unit at
the instance of buckling can be expressed as

Iy =1, + 4¢
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1 5oqa
2 2
P2 :EDP /b / {(VVH + Vsz) — 2(1 — V)[VVHVVZZ — le]}dxl dX2
-t Jo
2

1 hy a
4500 [ [0+ 1) = 201 ) F s~ PR
0 0

dx

X3=hyw

1
+3 /0 (ELR + GR V)

1 IE’ a hy a a
—20[/ / t, W} dxy dx, +/ / ty V2 dx; dxs +/ (AW} +24¢(x — he) iV + V), -y, dxy
-4 Jo 0 0 0
(8)
As a consequence of continuity and assumption (iv), the boundary conditions along the plate—stiffener
boundary are

V(x1,0) =0, V3(x1,0) = =W (x1,0) 9)
As a consequence of assumption (x), the boundary conditions on the ends of the plate and stiffener are

W(O,XZ) = W(a,xz) = VV]1(07)62) = VV]1(617)C2) =0 (10)

V(O,X3) = V(G,X3) = Vll(O,X3) = V]](LZ,Xg) = 0 (11)

6. Solution to the buckling equations

The Rayleigh-Ritz method is a very effective technique that finds an approximate solution to problems
formulated as an energy criterion. The method is summarized in two steps. First, assume an admissible
solution containing unknown coefficients that satisfy the boundary conditions of the problem. Second,
substitute the assumed solution into the functional and determine the value of the unknown coefficients that
minimize the functional.

From experimental observation and by assumption (vi), the deflection of the plate panel is assumed
mmnx; . TXp

sin —- 12

; 5 (12)

The value m is the number of half-waves in the buckling mode along the longitudinal axis and is taken to be
the integer that gives the lowest value for the buckling stress. The deflection of the stiffener is assumed

W(XhXQ) = sin

Why . mmx; . TIX3

sin sin
b a uhy’

Here p is an arbitrary parameter chosen to minimize the expression for the buckling stress.
Expressions (12) and (13) satisfy boundary conditions (9)—(11). Substitution of (12) and (13) into (8), and
application of the stability criterion (6), yields

V(x1,x3) = u#0 (13)

Dpb

W (24 4) + Term, + 1, (722) (£ sinz)” + G (cosz )’

Oor S tpb3 twhfv,u2 I o3 2T
>+ 5 (1 -3 smT) + Term,
Dyhy | (muhy — a \° w2 n . 2n (14)
T = 1 ——sin— 4(1 —v)z— sin—
erm, > ( P + m,uhw> ( 5 Sin . +4(1 —v) 5y Sl .

2 2
Term, :AM@(E sinf) + 24¢(x — hf)hw(ﬁ sinz) (cosz> +[f<COSE)
AT AT It It
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The lowest value of o, in (14) is usually obtained by taking m to be one of the two integers closest to a/b.
One method of determining u is by setting equal to zero the ordinary derivative of the quotient expression
(14) with respect to p and solving for p. We determine the parameter u by graphical means.

Notice that in the case of a plate panel with no stiffener, only the first terms of the numerator and
denominator in (14) remain and the buckling stress value is

D—"b('”—h-i-i)2 2 (mb  a\’

2 a mb _

"cr<T—Dptp7<—+%> (13)
272

Expression (15) agrees with the well-known solution for the buckling of a plate that has length @, width b,
and is simply supported at all edges.

7. Simplified special mode buckling stress formulas

Our previous general buckling stress expression (14) involves a parameter y, which must be determined
numerically to provide the minimum value of o.,. However, we have found that the special values u =1, 2,
and p — oo provide good approximations to the minimal buckling stresses, as well as insights into the
buckling mode behavior.

Note further that since m ~ a/b, the factor muhy/a ~ phy /b in Term; of our buckling stress formula (14)
is usually negligible compared to a/muhy, ~ b/uh,. Neglecting a factor in the numerator of (14) lowers the
buckling stress, whereas specializing pu in (14) raises the buckling stress, so the two approximations
counteract each other.

For p =1, the deflection mode becomes f(x;) = hw sin 72 = and the simplified buckling stress is

a mh.

2
DT(@JF,&)ZJFD“%(L) +GJp

(16)

Our S p
2n2+ 5 “+I

Fig. 6a depicts the deflection of the structure corresponding to Mode 1 that is best described by a bending
of the web in one half-wave and a rotation of the flange about a point at the top of the web. There is no
flange bending along its length. Such a mode could occur when the flange bending stiffness is large com-
pared to flange torsional and web bending stiffness.

For u =2, the deflection mode becomes f/(x3) = 2 sin 2= * and the buckling stress is

%(mmﬁ%’w(ﬁ) 4B ()

a 4Afhw a ( 1 7)

2

g
o= 2twh3

2 +

+

Fig. 6. (a) Mode 1 deflection, (b) Mode 2 deflection and (c) Mode 3 deflection.
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Fig. 6b depicts the deflection of the structure corresponding to Mode 2. This deflection corresponds to a
significant bending of the flange and web with no flange torsion. This mode could occur when the flange
torsional stiffness is large compared to flange and web bending stiffness.

For u — oo, the deflection mode becomes f(x3) = %* and the buckling stress is

Db
< 2

GCI’ ~

(24 )" + 58 1 1 (25 + G

tzpjf} twga + Arhl + 247 (X — he)hy + I;

(18)

Fig. 6¢c depicts the deflection of the structure corresponding to Mode 3. This deflection corresponds to the
flange exhibiting a combination of bending and twisting while the web tends to remain straight. Such a
mode could occur when the web bending stiffness is large compared to flange torsional and bending
stiffness. This case is likely to occur when the flange offers little or no additional stiffness to the plate
structure compared to the contribution of the web. In fact, setting the flange parameters to zero in (18), we
obtain the buckling stress of a plate with a thin-webbed stiffener but no flange.

The value of u can be interpreted to indicate the deflection behavior based on the three special deflection
modes:

Mode U Flange bending Flange torsion Web bending
1 1 No Yes Yes
2 2 Yes No Yes
3 0 Yes Yes No

8. Validation of the buckling formulas using finite element models

Numerical and experimental investigations give insight about the behavior of stiffened plates and serve
as a basis of comparison to theoretical predictions. Here the results of finite element analyses for several
stiffened plate models using MSC Nastran 2001/Patran 2001-r3 software are compared to analytical pre-
dictions to establish a degree of confirmation.

Several simply supported rectangular plate structures serve as finite element models. Each plate structure
has a plate panel of length a, width 25, and thickness ¢, such that 7, < b < a (Fig. 7). The stiffener divides
the width of the plate in halves. Each plate panel half extends 4 units of length from the web to the simply

— % —

L.

2

Fig. 7. Stiffened plate pre-buckling and buckling mode.
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supported edge. The stiffener includes a thin web of length a, height 4, and thickness #, such that
ty < hy, < a. The stiffener may contain a bulb flat flange, whose cross sectional dimensions are determined
by the parameters outlined earlier in this paper. Each stiffened plate structure is subjected to axial com-
pression due to a uniform normal stress ¢ which increases to the buckling stress.

The derived analytical expressions in the previous section were modeled assuming a plate panel of width
b. This coincides with the analysis of a single plate unit containing a single longitudinal stiffener that would
be part of a larger plate structure where b units of length separate each stiffener. In this discussion, the plate
structure is modeled with width 2b, as shown in Fig. 7. The boundaries of the plate panel are now simply
supported on the lateral edges, as well as the ends, leading to the additional boundary conditions

W(xl, —b) = W(xl,b) = VVZQ()C], —b) = Vsz(Xl,b) = 0 (19)

Consistency with the finite element model analysis of the 25 width model requires changing the limits of
integration associated with the plate energy terms Upjae and Ty from x, = £5b/2 to +b. The fundamental
problem and its mode shapes remain unchanged. Thus the only change in our previous formulas (14)—(18)
is the multiplication of the first terms in the numerator and denominator by a factor of 2. The buckling
stress predicted by our complete formula (14) becomes

2 2 2
Dyb (24 )2 4 Dl {(”’ +m§hw) (1 s sin%) Al —v)L sm—} +E1,,C("”;A)2<g sin;—j) +GJf(cosg)
O'Cr<

) P
tp7 +mh3u (1 f%sin%’j +Afh\2,v<% sinﬁ) “FzAf(X*hf)hw(% sinﬁ)(cosﬁ)JrIf(cos"—j)
(20)

For our finite element models with bulb flat flanges, the best simplified formula is the ¢ = 2 case (17), which
becomes

2
pr(z—b+m%)2 0ot (o) 4 (2 )
Tor S + 2twh“ 4 il 4Afh (21)
For the no flange cases, we use formula (18) which becomes
Dpb(m 4 2)? 4 Pt
O'cr< p (a . mb) . 3 (22)
tpb _’_t“h

A secondary aim of the finite element analysis is to estimate the effects of several variables or factors. The
intention is to discern the sensitivity of the analytic expression accuracy due to the variability of web height
and flange area. The web height variable is examined at two levels and the flange area at four levels. The
plate panel parameters for all models remain fixed at the following values:

a =172 in. = 1829 mm
b =20 in. = 508 mm
t, = 0.3125 in. = 7.9375 mm

In the Corus brochure, a 105 mm stiffener with a bulb flat flange has a web height of 84.41 mm; this is the
web height used for the first set of plate models. A 120 mm stiffener with a bulb flat flange has a web height
of 99.41 mm; this is the web height used for the second set of plate models. The web thickness is fixed at 6
mm. There are four flange areas examined. The first case is that for a stiffener with no flange. The remaining
flange area values are derived from the following bulb flat flange parameters, where r;, = (1/10)s, and
o=mn/6:
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Flange area level ¢, (mm) tor (mm) r (mm) Area (mm?)
1 N/A N/A N/A 0

2 6 17 5 335.59

3 6 20 5 401.69

4 6 25 5 523.39

Using these values, and converting the units from millimeter to inches, we obtain the parameters for the
stiffened plate models given in Table 3.

Fig. 8 shows the deflection of the plate and web at the onset of buckling for model 1. The plate and web
panels buckle in four half-waves along the longitudinal axis. The bulb flat flange is not visible, but its
properties exist in the curve that defines the top of the web.

Fig. 9 shows the difference in the buckling behavior between models 2 and 3. In each picture, the top of
the web has the beam characteristics of a bulb flat flange. The flange in the left picture has an area property
of 0.6226 in.2. The flange in the right picture has an area property of 0.8113 in.2. These properties are not
visible in the pictures, but exist in the curve that defines the top of each web. The web height in both
pictures is 3.3233 in. From Table 4, the u values for the left and right pictures are 2.57 and 2.25 respectively.
This indicates there is more lateral bending of the model 2 flange at the onset of buckling, which agrees with
the pictures shown.

Tables 4 and 5 give the formula predictions and finite element results. The parameter m = 4 in all cases.

Table 4 compares the bulb flat configurations for each model. The simplified formula values (21) are less
than 4% above the finite element results. Examination of the p values indicates that the buckling behavior
of the stiffened plates tend to have significant bending of the flange and web with a degree of flange torsion.

Table 3
Summary of stiffened plate model parameters
Model # Flange parameters Web parameters
1 Ap = 0.5202 in.? hy =3.3233 in.
tor = 0.6693 in., r = 0.1969 in. ty = 0.2362 in.

r = (1/10)#, = 0.0236 in.
o= n/6 rad, iy = 0.8106 in.

2 Ar = 0.6226 in.2 hy = 3.3233 in.
toe = 0.7874 in., r = 0.1969 in. tw = 0.2362 in.
r = (1/10)t, = 0.0236 in.
o= 7/6 rad, iy = 0.8788 in.

3 A =0.8113 in2 hy = 3.3233 in.
toe = 0.9843 in., » = 0.1969 in. tw = 0.2362 in.
r = (1/10)#, = 0.0236 in.
o= n/6 rad, iy = 0.9924 in.

4 Same as model 1 hy = 3.9138 in.
tw = 0.2362 in.
5 Same as model 2 hy, = 3.9138 in.
tw = 0.2362 in.
6 Same as model 3 h,, = 3.9138 in.

ty = 0.2362 in.
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Fig. 9. MSC Patran pictures showing the buckling behavior of the webs with bulb flat flanges for models 2 (left) and 3 (right).

Table 4
Bulb flat FE results
Model # FE results (psi) Formula (20) (psi) u Formula (21) (psi) 100 = ((21)—FE)/FE
(7o)
1 27,672 28,397 2.86 28,554 3.19
2 27,877 28,824 2.57 28,763 3.18
3 28,203 29,642 2.25 29,301 3.89
4 27,663 28,425 2.68 28,264 2.17
5 27,881 28,908 2.40 28,552 2.41
6 28,217 29,852 2.11 29,292 3.81
Table 5
No flange FE results
Model # FE results (psi) Formula (22) (psi) 100 = ((22) — FE)/FE (%)
1-3 26,928 27,129 0.75

4-6 26,892 27,052 0.59
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This type of buckling behavior can be seen in the Patran pictures on the previous page. As the flange areas
increase between models 1, 2, and 3, and also between models 4, 5, and 6, the u values tend to approach the
value 2, indicating perhaps an increasing torsional rigidity effect. The buckling stresses tend to increase as
the flange area increases, as expected. Overall, the results indicate that at the onset of buckling, the bulb flat
stiffened plate structures deflect with a combination of flange bending and torsion along with web bending.

Table 5 compares the results for the stiffened plates without flanges. The formula values nearly agree
with the finite element results.

From finite element results, the buckling stress of a plate with a bulb flat stiffener is 3-4% less than that
of a plate with a T flange stiffener of the same cross sectional area. See Wilmer (2003) for more details on
the buckling of plates with stiffener flanges of T and other cross sections.

9. Summary
The following summarizes our major findings and conclusions, followed by explanatory comments.
e Determined cross sectional boundary equations for the bulb flat flange cross section.

In order to conduct an accurate analysis of the bulb flat cross section, it is necessary to determine
equations that define or at least approximate the boundary that is a closed bounded plane region. The
equation that defines the boundary of a simple geometric cross section like a circle or ellipse is well known.
The boundary equation for uncommon and asymmetric cross sections is often very difficult to define. As a
result of this study, functions exist that define the boundary of the bulb flat flange cross section.

e Derived planar property value expressions.

Determining the critical buckling stress of a stiffened plate structure requires knowledge of several planar
property values of the plate’s cross section. Based on the boundary equations and the application of multi-
variable calculus, a double integral provides expressions for calculating the various planar properties of the
bulb flat flange cross section. Though the integral expressions are complicated, they could be simplified by
assigning fixed values to certain variables.

e Determined an approximate torsional constant expression that is more accurate than idealizing.

The Saint-Venant torsional constant is one of the key property values involved in the analysis of stiffened
plate structures. Due to the uncommon shape and asymmetrical property of the bulb flat cross section,
determining the exact expression for the Saint-Venant torsional constant is difficult and does not exist in
published literature. As a result of this study, an empirical expression exists for the Saint-Venant torsional
constant of a specified class of bulb flat cross sections. The empirical expression is a one-term function
involving the flange cross sectional area and polar moment of inertia.

e Demonstrated that the torsional property of the bulb flat stiffener is now understood better than previ-
ously. The torque-carrying capacity of a bulb flat stiffener is greater than that of an area-equivalent angle
stiffener.

In previous investigations the torsional nature of the bulb flat stiffener was idealized as an angle flange
stiffener. That is, the bulb flat flange cross section was treated like a rectangular cross section in regards to
the torsional and warping properties. Such treatment imputed error in the calculation of the bulb flat
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stiffener’s torsional rigidity resulting in conservative estimates. Finite element analysis indicates that the
torque-carrying capacity of a bulb flat stiffener (possessing no structural flaws) is greater than that of an
area-equivalent angle stiffener.

e Derived general expressions to predict the buckling stress due to the stiffener tripping of a simply sup-
ported rectangular stiffened plate subjected to axial compression. For stiffeners with a bulb flat flange,
the values predicted with a simple formula are less than 4% higher than the finite element results.

Understanding the elastic stability of stiffened plate structures is important to the analyst, designer, and
educator involved in the analysis and design of structures. Use of the energy method provides a technique
to derive a general expression for the buckling stress due to the stiffener tripping of a simply supported
rectangular stiffened plate subjected to axial compression. As a result of this study, a useful analytic
expression exists that allows the user to predict the critical buckling stress and the buckling behavior of a
stiffened plate at the onset of stiffener tripping. The onset of stiffener tripping negates the stiffener’s support
to the plate panel and leads to eventual collapse of the structure. The general expressions involve a
parameter u, determined graphically, that can be interpreted to indicate the deflection behavior. Simplified
buckling stress formulas corresponding to Mode 2 (u = 2) give even better predictions for the modeled
structures.

10. Comparison with experimental results

Careful experiments on large-scale multi-bay grillages have been performed by Kihl (2003). A grillage
with bulb flat stiffeners failed in the tripping manner postulated in this paper. The minimum critical elastic
buckling stress o, was obtained from Eq. (17) for Mode 2. The ultimate failure stress o, Was then
determined from the following equation:

Ocrinel = Oy [1 -l =p) (Z—y>} for proy < 0o < 0y (23)
cr

Here p, = 0.5 is the ratio of the structural proportional limit to the yield strength ¢,. Using measured values

for geometrical and material parameters, Kihl (2003) calculated a force which is only 3.7% less than his

measured ultimate failure load of 1.34 million pounds.
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